Sum of All Subset XOR Totals - Problem
The XOR total of an array is defined as the bitwise XOR of all its elements, or 0 if the array is empty.
For example, the XOR total of the array [2,5,6] is 2 XOR 5 XOR 6 = 1.
Given an array nums, return the sum of all XOR totals for every subset of nums.
Note: Subsets with the same elements should be counted multiple times.
An array a is a subset of an array b if a can be obtained from b by deleting some (possibly zero) elements of b.
Input & Output
Example 1 — Basic Case
$
Input:
nums = [1,3]
›
Output:
6
💡 Note:
Subsets: [] (XOR=0), [1] (XOR=1), [3] (XOR=3), [1,3] (XOR=1⊕3=2). Sum: 0+1+3+2 = 6
Example 2 — Three Elements
$
Input:
nums = [5,1,6]
›
Output:
28
💡 Note:
8 subsets: [] (0), [5] (5), [1] (1), [6] (6), [5,1] (4), [5,6] (3), [1,6] (7), [5,1,6] (2). Sum: 0+5+1+6+4+3+7+2 = 28
Example 3 — Single Element
$
Input:
nums = [3]
›
Output:
3
💡 Note:
Only 2 subsets: [] (XOR=0) and [3] (XOR=3). Sum: 0+3 = 3
Constraints
- 1 ≤ nums.length ≤ 12
- 1 ≤ nums[i] ≤ 20
Visualization
Tap to expand
Understanding the Visualization
1
Input
Array [5,1,6] with 3 elements
2
Generate Subsets
Create all 2³ = 8 possible subsets
3
Calculate XOR
Find XOR total for each subset
4
Sum All
Add all XOR totals: 0+5+1+6+4+3+7+2 = 28
Key Takeaway
🎯 Key Insight: Generate all possible subsets and calculate the XOR total for each, then sum them all up
💡
Explanation
AI Ready
💡 Suggestion
Tab
to accept
Esc
to dismiss
// Output will appear here after running code