Partition Array to Minimize XOR - Problem
You are given an integer array nums and an integer k. Your task is to partition nums into k non-empty subarrays.
For each subarray, compute the bitwise XOR of all its elements. Return the minimum possible value of the maximum XOR among these k subarrays.
A subarray is a contiguous part of an array.
Input & Output
Example 1 — Basic Case
$
Input:
nums = [1,2,3,4], k = 2
›
Output:
4
💡 Note:
Optimal partition: [1,2,3] with XOR = 0, and [4] with XOR = 4. Maximum XOR = max(0,4) = 4.
Example 2 — Single Elements
$
Input:
nums = [5,6,7], k = 3
›
Output:
7
💡 Note:
Each element forms its own partition: [5], [6], [7]. Maximum XOR = max(5,6,7) = 7.
Example 3 — All Together
$
Input:
nums = [1,1,1,1], k = 1
›
Output:
0
💡 Note:
All elements in one partition: [1,1,1,1]. XOR = 1⊕1⊕1⊕1 = 0.
Constraints
- 1 ≤ nums.length ≤ 103
- 1 ≤ nums[i] ≤ 106
- 1 ≤ k ≤ nums.length
Visualization
Tap to expand
Understanding the Visualization
1
Input
Array [1,2,3,4] with k=2 partitions needed
2
Process
Try different ways to partition and compute XOR for each part
3
Output
Return minimum possible maximum XOR value: 4
Key Takeaway
🎯 Key Insight: Binary search on the answer space (maximum XOR values) with greedy feasibility checking
💡
Explanation
AI Ready
💡 Suggestion
Tab
to accept
Esc
to dismiss
// Output will appear here after running code