Minimum XOR Sum of Two Arrays - Problem
You are given two integer arrays nums1 and nums2 of length n.
The XOR sum of the two integer arrays is (nums1[0] XOR nums2[0]) + (nums1[1] XOR nums2[1]) + ... + (nums1[n - 1] XOR nums2[n - 1]) (0-indexed).
For example, the XOR sum of [1,2,3] and [3,2,1] is equal to (1 XOR 3) + (2 XOR 2) + (3 XOR 1) = 2 + 0 + 2 = 4.
Rearrange the elements of nums2 such that the resulting XOR sum is minimized.
Return the XOR sum after the rearrangement.
Input & Output
Example 1 — Basic Case
$
Input:
nums1 = [1,2], nums2 = [2,3]
›
Output:
2
💡 Note:
Rearrange nums2 to [3,2]. XOR sum = (1^3) + (2^2) = 2 + 0 = 2, which is minimum
Example 2 — Three Elements
$
Input:
nums1 = [1,2,3], nums2 = [1,2,3]
›
Output:
0
💡 Note:
Keep nums2 as [1,2,3]. XOR sum = (1^1) + (2^2) + (3^3) = 0 + 0 + 0 = 0
Example 3 — No Perfect Match
$
Input:
nums1 = [1,0,3], nums2 = [5,3,4]
›
Output:
8
💡 Note:
Rearrange nums2 to [5,4,3]. XOR sum = (1^5) + (0^4) + (3^3) = 4 + 4 + 0 = 8
Constraints
- n == nums1.length
- n == nums2.length
- 1 ≤ n ≤ 14
- 0 ≤ nums1[i], nums2[i] ≤ 107
Visualization
Tap to expand
Understanding the Visualization
1
Input Arrays
Two arrays nums1 and nums2 of equal length
2
Rearrange nums2
Find optimal permutation of nums2 to minimize XOR sum
3
Calculate Result
Sum of XOR operations between corresponding elements
Key Takeaway
🎯 Key Insight: This is an assignment problem where we must find the optimal one-to-one pairing between elements to minimize total cost
💡
Explanation
AI Ready
💡 Suggestion
Tab
to accept
Esc
to dismiss
// Output will appear here after running code