Find the Number of Good Pairs II - Problem

You are given 2 integer arrays nums1 and nums2 of lengths n and m respectively. You are also given a positive integer k.

A pair (i, j) is called good if nums1[i] is divisible by nums2[j] * k (where 0 <= i <= n - 1 and 0 <= j <= m - 1).

Return the total number of good pairs.

Input & Output

Example 1 — Basic Case
$ Input: nums1 = [1,3,4], nums2 = [1,3,4], k = 1
Output: 5
💡 Note: Good pairs: (0,0) since 1%(1*1)=0, (1,0) since 3%(1*1)=0, (1,1) since 3%(3*1)=0, (2,0) since 4%(1*1)=0, (2,2) since 4%(4*1)=0. Total = 5 pairs.
Example 2 — With Multiplier k=2
$ Input: nums1 = [1,2,4,12], nums2 = [2,4], k = 3
Output: 2
💡 Note: Check divisibility by nums2[j]*k: nums2*3 = [6,12]. Only 12%6=0 and 12%12=0 are valid. Good pairs: (3,0) and (3,1). Total = 2 pairs.
Example 3 — No Valid Pairs
$ Input: nums1 = [1,3], nums2 = [5], k = 2
Output: 0
💡 Note: nums2*k = [10]. Neither 1%10=1 nor 3%10=3 equals 0. No good pairs exist.

Constraints

  • 1 ≤ nums1.length, nums2.length ≤ 105
  • 1 ≤ nums1[i], nums2[i] ≤ 106
  • 1 ≤ k ≤ 103

Visualization

Tap to expand
Find Good Pairs II: Divisibility Check134i=0i=1i=2nums1134j=0j=1j=2nums2k = 1Check: nums1[i] % (nums2[j] * k) == 0✓ Valid pairs: (0,0): 1%(1*1)=0, (1,0): 3%(1*1)=0, (1,1): 3%(3*1)=0✓ (2,0): 4%(1*1)=0, (2,2): 4%(4*1)=0Total Good Pairs5
Understanding the Visualization
1
Input Arrays
nums1=[1,3,4], nums2=[1,3,4], k=1
2
Check Divisibility
For each nums1[i], check if divisible by nums2[j] * k
3
Count Valid Pairs
Sum all pairs where nums1[i] % (nums2[j] * k) == 0
Key Takeaway
🎯 Key Insight: Use frequency counting to optimize repeated divisibility checks for duplicate values
Asked in
Google 15 Amazon 12 Microsoft 8
12.5K Views
Medium Frequency
~15 min Avg. Time
245 Likes
Ln 1, Col 1
Smart Actions
💡 Explanation
AI Ready
💡 Suggestion Tab to accept Esc to dismiss
// Output will appear here after running code
Code Editor Closed
Click the red button to reopen