On a single-threaded CPU, we execute a program containing n functions. Each function has a unique ID between 0 and n-1.
Function calls are stored in a call stack: when a function call starts, its ID is pushed onto the stack, and when a function call ends, its ID is popped off the stack. The function whose ID is at the top of the stack is the current function being executed.
Each time a function starts or ends, we write a log with the ID, whether it started or ended, and the timestamp. You are given a list logs, where logs[i] represents the ith log message formatted as a string "{function_id}:{"start" | "end"}:{timestamp}".
For example, "0:start:3" means a function call with function ID 0 started at the beginning of timestamp 3, and "1:end:2" means a function call with function ID 1 ended at the end of timestamp 2.
Note that a function can be called multiple times, possibly recursively.
A function's exclusive time is the sum of execution times for all function calls in the program. For example, if a function is called twice, one call executing for 2 time units and another call executing for 1 time unit, the exclusive time is 2 + 1 = 3.
Return the exclusive time of each function in an array, where the value at the ith index represents the exclusive time for the function with ID i.
Input & Output
Constraints
- 1 ≤ n ≤ 100
- 1 ≤ logs.length ≤ 500
- 0 ≤ function_id < n
- 0 ≤ timestamp ≤ 109
- Two start events will not happen at the same timestamp
- Two end events will not happen at the same timestamp
- Each function has an "end" log for each "start" log