Count Subarrays With Score Less Than K - Problem
The score of an array is defined as the product of its sum and its length.
For example, the score of [1, 2, 3, 4, 5] is (1 + 2 + 3 + 4 + 5) × 5 = 75.
Given a positive integer array nums and an integer k, return the number of non-empty subarrays of nums whose score is strictly less than k.
A subarray is a contiguous sequence of elements within an array.
Input & Output
Example 1 — Basic Case
$
Input:
nums = [2,1,3], k = 10
›
Output:
5
💡 Note:
Subarrays: [2] score=2×1=2<10 ✓, [2,1] score=3×2=6<10 ✓, [2,1,3] score=6×3=18≥10 ✗, [1] score=1×1=1<10 ✓, [1,3] score=4×2=8<10 ✓, [3] score=3×1=3<10 ✓. Total: 5 valid subarrays.
Example 2 — Small K Value
$
Input:
nums = [1,1,1], k = 5
›
Output:
5
💡 Note:
Subarrays: [1] score=1×1=1<5 ✓, [1,1] score=2×2=4<5 ✓, [1,1,1] score=3×3=9≥5 ✗, [1] score=1×1=1<5 ✓, [1,1] score=2×2=4<5 ✓, [1] score=1×1=1<5 ✓. Total: 5 valid subarrays.
Example 3 — Large K Value
$
Input:
nums = [1,2], k = 100
›
Output:
3
💡 Note:
All subarrays have score < 100: [1] score=1×1=1<100 ✓, [1,2] score=3×2=6<100 ✓, [2] score=2×1=2<100 ✓. Total: 3 valid subarrays.
Constraints
- 1 ≤ nums.length ≤ 105
- 1 ≤ nums[i] ≤ 105
- 1 ≤ k ≤ 1015
Visualization
Tap to expand
Understanding the Visualization
1
Input
Array nums=[2,1,3] and threshold k=10
2
Calculate Scores
For each subarray: score = sum × length
3
Count Valid
Count subarrays where score < k
Key Takeaway
🎯 Key Insight: Score grows faster than linearly due to multiplication by length, enabling early termination optimization
💡
Explanation
AI Ready
💡 Suggestion
Tab
to accept
Esc
to dismiss
// Output will appear here after running code