Count Subarrays of Length Three With a Condition - Problem
Given an integer array nums, return the number of subarrays of length 3 such that the sum of the first and third numbers equals exactly half of the second number.
A subarray is a contiguous part of an array. For each valid subarray [nums[i], nums[i+1], nums[i+2]], check if nums[i] + nums[i+2] == nums[i+1] / 2.
Input & Output
Example 1 — Basic Case
$
Input:
nums = [1,2,3,4,5]
›
Output:
0
💡 Note:
Check each triplet: [1,2,3] → 1+3=4, 2/2=1, 4≠1. [2,3,4] → 2+4=6, 3/2=1.5, 6≠1.5. [3,4,5] → 3+5=8, 4/2=2, 8≠2. No valid triplets.
Example 2 — Valid Triplet
$
Input:
nums = [2,10,3]
›
Output:
1
💡 Note:
Triplet [2,10,3]: 2+3=5, 10/2=5. Since 5=5, this triplet satisfies the condition. Count = 1.
Example 3 — Multiple Triplets
$
Input:
nums = [1,6,2,4,8,2]
›
Output:
2
💡 Note:
Check triplets: [1,6,2] → 1+2=3, 6/2=3 ✓. [6,2,4] → 6+4=10, 2/2=1 ✗. [2,4,8] → 2+8=10, 4/2=2 ✗. [4,8,2] → 4+2=6, 8/2=4 ✗. Two valid triplets.
Constraints
- 3 ≤ nums.length ≤ 100
- -100 ≤ nums[i] ≤ 100
Visualization
Tap to expand
💡
Explanation
AI Ready
💡 Suggestion
Tab
to accept
Esc
to dismiss
// Output will appear here after running code