Count Square Sum Triples - Problem
A square triple (a,b,c) is a triple where a, b, and c are integers and a² + b² = c².
Given an integer n, return the number of square triples such that 1 ≤ a, b, c ≤ n.
For example, if n = 5, the square triples are (3,4,5) and (4,3,5), so the answer is 2.
Input & Output
Example 1 — Basic Case
$
Input:
n = 5
›
Output:
2
💡 Note:
The square triples are (3,4,5) and (4,3,5). Both satisfy 3² + 4² = 9 + 16 = 25 = 5² and all values are ≤ 5.
Example 2 — Small Range
$
Input:
n = 3
›
Output:
0
💡 Note:
No valid square triples exist with all values ≤ 3. The smallest Pythagorean triple is (3,4,5) but 4 and 5 exceed the limit.
Example 3 — Larger Range
$
Input:
n = 10
›
Output:
4
💡 Note:
Valid triples: (3,4,5), (4,3,5), (6,8,10), (8,6,10). Each satisfies the Pythagorean theorem with all values ≤ 10.
Constraints
- 1 ≤ n ≤ 250
Visualization
Tap to expand
Understanding the Visualization
1
Input
Given n=5, find all (a,b,c) where a²+b²=c² and 1≤a,b,c≤5
2
Process
Check all combinations for Pythagorean relationship
3
Output
Count of valid triples: 2
Key Takeaway
🎯 Key Insight: Use the Pythagorean theorem to identify valid right triangle integer sides
💡
Explanation
AI Ready
💡 Suggestion
Tab
to accept
Esc
to dismiss
// Output will appear here after running code