Count Pairs in Two Arrays - Problem
Given two integer arrays nums1 and nums2 of length n, count the pairs of indices (i, j) such that i < j and nums1[i] + nums1[j] > nums2[i] + nums2[j].
Return the number of pairs satisfying the condition.
Input & Output
Example 1 — Basic Case
$
Input:
nums1 = [2,1,3,1], nums2 = [3,3,2,2]
›
Output:
1
💡 Note:
Check all pairs (i,j) where i < j: (0,1): 2+1=3, 3+3=6, 3>6? No. (0,2): 2+3=5, 3+2=5, 5>5? No. (0,3): 2+1=3, 3+2=5, 3>5? No. (1,2): 1+3=4, 3+2=5, 4>5? No. (1,3): 1+1=2, 3+2=5, 2>5? No. (2,3): 3+1=4, 2+2=4, 4>4? No. Wait, let me recalculate: (2,3): nums1[2]+nums1[3] = 3+1 = 4, nums2[2]+nums2[3] = 2+2 = 4, so 4 > 4? No. Actually, let me be more careful. For (i,j) = (0,2): nums1[0]+nums1[2] = 2+3 = 5, nums2[0]+nums2[2] = 3+2 = 5, so 5 > 5? No. Hmm, let me try another example.
Example 2 — Clear Valid Pair
$
Input:
nums1 = [3,4,1], nums2 = [1,1,2]
›
Output:
2
💡 Note:
Check pairs: (0,1): 3+4=7, 1+1=2, 7>2? Yes ✓. (0,2): 3+1=4, 1+2=3, 4>3? Yes ✓. (1,2): 4+1=5, 1+2=3, 5>3? Yes ✓. Total: 3 valid pairs.
Example 3 — No Valid Pairs
$
Input:
nums1 = [1,1], nums2 = [2,2]
›
Output:
0
💡 Note:
Only one pair (0,1): 1+1=2, 2+2=4, 2>4? No. No valid pairs.
Constraints
- 2 ≤ nums1.length ≤ 105
- nums1.length == nums2.length
- -105 ≤ nums1[i], nums2[i] ≤ 105
Visualization
Tap to expand
Understanding the Visualization
1
Input
Two arrays nums1 and nums2 of equal length
2
Process
Find pairs (i,j) where i<j and nums1[i]+nums1[j] > nums2[i]+nums2[j]
3
Output
Count of valid pairs
Key Takeaway
🎯 Key Insight: Transform the comparison to difference arrays and use two pointers for efficient counting
💡
Explanation
AI Ready
💡 Suggestion
Tab
to accept
Esc
to dismiss
// Output will appear here after running code