Count Nice Pairs in an Array - Problem
You are given an array nums that consists of non-negative integers. Let us define rev(x) as the reverse of the non-negative integer x. For example, rev(123) = 321, and rev(120) = 21.
A pair of indices (i, j) is nice if it satisfies all of the following conditions:
0 <= i < j < nums.lengthnums[i] + rev(nums[j]) == nums[j] + rev(nums[i])
Return the number of nice pairs of indices. Since that number can be too large, return it modulo 10⁹ + 7.
Input & Output
Example 1 — Basic Case
$
Input:
nums = [42,11,1,97]
›
Output:
2
💡 Note:
The two nice pairs are (0,3) and (1,2). For (0,3): 42 + rev(97) = 42 + 79 = 121, and 97 + rev(42) = 97 + 24 = 121. For (1,2): 11 + rev(1) = 11 + 1 = 12, and 1 + rev(11) = 1 + 11 = 12.
Example 2 — Single Nice Pair
$
Input:
nums = [13,10,35,24,76]
›
Output:
4
💡 Note:
Multiple pairs satisfy the nice condition when nums[i] - rev(nums[i]) equals nums[j] - rev(nums[j]).
Example 3 — No Nice Pairs
$
Input:
nums = [123,456]
›
Output:
0
💡 Note:
123 + rev(456) = 123 + 654 = 777, but 456 + rev(123) = 456 + 321 = 777. Actually this is a nice pair! The difference approach: 123-321=-198, 456-654=-198, so they have same difference and form 1 nice pair.
Constraints
- 1 ≤ nums.length ≤ 105
- 0 ≤ nums[i] ≤ 109
Visualization
Tap to expand
Understanding the Visualization
1
Input Array
[42, 11, 1, 97] - find nice pairs
2
Transform
Calculate num - reverse(num) for each element
3
Count Pairs
Elements with same difference form nice pairs
Key Takeaway
🎯 Key Insight: Transform the equation to find elements with the same difference value
💡
Explanation
AI Ready
💡 Suggestion
Tab
to accept
Esc
to dismiss
// Output will appear here after running code