Bitwise XOR of All Pairings - Problem
You are given two 0-indexed arrays, nums1 and nums2, consisting of non-negative integers.
Let there be another array, nums3, which contains the bitwise XOR of all pairings of integers between nums1 and nums2 (every integer in nums1 is paired with every integer in nums2 exactly once).
Return the bitwise XOR of all integers in nums3.
Input & Output
Example 1 — Basic Case
$
Input:
nums1 = [2,1], nums2 = [3,4]
›
Output:
2
💡 Note:
All pairs: (2,3)→1, (2,4)→6, (1,3)→2, (1,4)→5. Final XOR: 1⊕6⊕2⊕5 = 2
Example 2 — Single Elements
$
Input:
nums1 = [1], nums2 = [2]
›
Output:
3
💡 Note:
Only one pair: (1,2) → 1⊕2 = 3
Example 3 — Same Values
$
Input:
nums1 = [1,2], nums2 = [3,4]
›
Output:
0
💡 Note:
Pairs: (1,3)→2, (1,4)→5, (2,3)→1, (2,4)→6. XOR: 2⊕5⊕1⊕6 = 0
Constraints
- 1 ≤ nums1.length, nums2.length ≤ 105
- 0 ≤ nums1[i], nums2[j] ≤ 109
Visualization
Tap to expand
Understanding the Visualization
1
Input Arrays
Two arrays nums1=[2,1] and nums2=[3,4]
2
Generate All Pairs
Create pairs: (2,3), (2,4), (1,3), (1,4) and XOR each
3
Final XOR
XOR all pair results: 1⊕6⊕2⊕5 = 2
Key Takeaway
🎯 Key Insight: XOR cancellation property allows us to avoid generating all pairs by analyzing element frequencies.
💡
Explanation
AI Ready
💡 Suggestion
Tab
to accept
Esc
to dismiss
// Output will appear here after running code